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Executive Summary 
As engineered defense systems become progressively more complex, the Department of 
Defense (DoD) is leveraging modeling and simulation (M&S) in the design, development, and 
engineering of new capabilities. As new systems are designed to serve broader Joint missions 
in challenging situations, often M&S is the safest, most economical, and in some cases, the only 
means available to test systems under development. When appropriate Digital Engineering (DE) 
models are not readily available, programs will need to modify existing models or create new 
ones to fill the gaps, either in the form of emulators based on existing models or entirely novel 
models based on new data. In these situations, empirical data may be required to support the 
creation or updating of a model of the desired system, whether that system is another model or 
some real-world object or phenomenon. The application of Scientific Test and Analysis 
Techniques (STAT) to the collection of empirical data helps ensure that the data is a meaningful 
and faithful reflection of the system to be modeled and supports the creation of useful empirical 
models. This best practice outlines the process by which a DE program should leverage the DE 
environment to efficiently model systems by first leveraging existing resources on the Digital 
Thread, and then by using first principles and empirical data to build new models where needed. 
The process also outlines how and when to leverage empirical techniques, via the STAT 
Process (Adams et al., 2020), to model new systems and phenomena, improve the readiness of 
existing models, and create model emulators when appropriate.   

https://www.afit.edu/stat/statcoe_files/Guide%20to%20Developing%20an%20Effective%20Test%20Strategy_DistroA.pdf
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Introduction 
As engineered defense systems become progressively more complex, the Department of 
Defense (DoD) is leveraging modeling and simulation (M&S) in the design, development, and 
engineering of new capabilities. As new systems are designed to serve broader Joint missions 
in challenging situations, often M&S is the safest, most economical, and in some cases, the only 
means available to test systems under development. Furthermore, the 2018 DoD Digital 
Engineering Strategy reiterated the importance of models in DoD engineering, and established 
a goal for Enterprise-level Digital Engineering (DE) across the DoD to accelerate the pace of the 
acquisition lifecycle and alleviate stove-piping in technology development (Deputy Assistant 
Secretary of Defense for Systems Engineering (DASD(SE)), 2018). DE is an integrated digital 
approach to systems engineering that uses authoritative sources of system data and models as 
a continuum across disciplines to support lifecycle activities from concept through disposal. With 
a growing reliance on M&S for test and evaluation, in some cases before physical articles exist 
to be tested, it is critical to decision makers and developers to have a metric to understand the 
readiness of models that represent systems under development. 
 
DE will facilitate cross-collaboration and the sharing of information between systems engineers 
working in different areas of the Enterprise and at different times. Programs developing new 
systems will be able to reuse knowledge gained by past efforts by utilizing digital models of 
previously engineered systems and phenomena. Additionally, programs will be able to plan 
system modeling efforts with an eye towards collaborating with the future. The use of 
composable models and common simulation architectures will enable models of future systems 
to be built quickly from re-configurable components and updated as the systems and their 
operating environments become better understood (Defense Modeling and Simulation 
Reference Architecture (DMSRA), 2020). As time progresses and the DoD implementation of 
DE matures, reusable first-principles models will dominate the model ecosystem. But for the 
early generations of DE, and in the future as new technologies emerge, there will be instances 
where models are needed which do not exist, are not validated, or are validated for at least one 
use but do not have the appropriate Model Readiness Level (MRL). The MRL is defined by the 
model’s agreement in fidelity with authoritative referents over its scope of applicability to support 
a desired new use (Ahner et al., 2021). MRL components and other relevant terms in this best 
practice are defined in more detail in the glossary section found at the end of this document. 
Successfully achieving this vision depends on having a reliable method to develop useful, 
reusable models. 
 
This best practices explains the process of model selection in the objective DE environment, as 
well as some of the remedies available when models do not exist or where existing models lack 
the necessary MRL. When appropriate DE models are not readily available, programs will need 
to modify existing models or create new ones to fill the gaps, either in the form of emulators 
based on existing models or entirely novel models based on new data. In these situations, 
empirical data may be required to support the creation or updating of a model of the desired 
system, whether that system is another model or some real-world object or phenomenon. The 
application of Scientific Test and Analysis Techniques (STAT) to the collection of empirical data 
helps ensure that the data is a meaningful and faithful reflection of the system to be modeled 
and supports the creation of useful empirical models.  
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Models in Digital Engineering 
DE leverages tools such as Model Based Systems Engineering (MBSE) to provide clarity and 
continuity throughout system development via a model-based approach to representing system 
requirements and interactions, but extends the use of models throughout the systems 
engineering lifecycle by introducing several new model and data constructs (Madni et al., 2019). 
The Digital Twin is defined as “an integrated multiphysics, multiscale, probabilistic simulation of 
an as-built system, enabled by [the] Digital Thread, that uses the best available models, sensor 
information, and input data to mirror and predict activities/performance over the life of its 
corresponding physical twin” (DAU Glossary, 2015). A Digital Twin “may [also] consider one or 
more important and interdependent […] systems,” including interacting systems and 
environmental effects that are not part of the system being developed (Glaessgen et al., 2012). 
The Digital Twin can enable programs to quickly evaluate design updates or changes via 
simulation; thereby greatly reducing the development timeline.  
 
Once the designed capability goes into production, the Digital Twin can continue to be updated 
with real-world performance and maintenance data collected from the actual systems, here 
referred to as Digital Telemetry. The Digital Telemetry enables the Digital Twin concept to be 
extended to create an individual digital representation of each fielded unit, useful for making 
manufacturing improvements, performance life predictions, and logistics planning. In the DE 
paradigm, model verification and validation are critical to individual engineering lines of effort 
and across the enterprise. Model verification and validation ensure that Digital Twins are 
realistic representations of engineered systems and that Digital Telemetry is used appropriately. 
 
As mentioned in the definition of Digital Twin, the critical technologies used in DE must be 
enabled by a Digital Thread: an overarching computer architecture which acts as a repository 
for, and provides access to, models, data, metadata, and services. The Digital Thread will serve 
as a source of authoritative truth for the program, and in the long term, for the DE enterprise 
(DAU Glossary, 2015, Zimmerman, 2019, Zweber, 2017). The Digital Thread is the central 
architecture at the core of the Enterprise DE concept, and will provide access to a library of 
architectures, models, and data for Enterprise-level users and programs. It will draw on 
standards and policy for model composability, interfaces, metadata, simulation architectures, 
verification, and validation to store, manage, and regulate appropriate reuse of models and data 
across multiple efforts.  
 
Future programs who use the Digital Thread will be able to see the pedigree, fidelity, and scope 
of applicability of previously developed models to determine if they are appropriate to use in 
new applications. The Digital Thread will provide a standardized, searchable repository for 
archiving models and data to allow future programs to easily find applicable models and prevent 
the need for them to duplicate the work of an earlier program. Stored models that follow the 
standards of the Digital Thread will not only be usable by a program, but may be used to 
validate new models based on either new data or first principles. The step change of keeping 
models on the Digital Thread potentially forever and providing enterprise users with structured 
access to them will eventually provide a library of referent models to validate against. The 
models in the library, if designed with model composability in mind, may even be combined to 
produce a more precise model with capability over a wider application range. 
 
All program-validated models along with their associated test data and metadata should move 
to the Digital Thread, where they can be stored, managed, further validated, and combined. Any 
model on the Digital Thread, be it based on first principles, lookup from raw data, or empirical 
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analysis, must be continuously evaluated and revalidated for each new use. This principle, 
called Continuous Validation, is described in Ahner et al. (2021). However, the Digital Thread 
will not come with a ready stock of models for every use case; the model library will have to be 
built up by the user community over time. Even once the Digital Thread is an established part of 
DE in the DoD, there will still be novel systems for which original models must be developed. In 
the absence of previous modeling and well understood first principles, empirical modeling will be 
the critical enabler for expanding the model library on the Digital Thread, and the DE capabilities 
of the DoD Enterprise.  

Model Selection and Development in Digital Engineering 
Models used in DE represent the physics, materials, objects, phenomena, and/or processes 
necessary to develop, test, maintain, and improve real-world systems and objects. Programs 
developing systems in the objective DE environment will use models in a digital test 
environment to evaluate whether or not the program’s requirements can be met before 
expending the resources to physically manifest the system being developed. The flowchart in 
Figure 1 shows the process by which a DE program should leverage the DE environment to 
efficiently model systems by first leveraging existing resources on the Digital Thread, and then 
by using first principles and empirical data to build new models where needed. The process also 
outlines how and when to leverage empirical techniques, via the STAT Process (Adams et al., 
2020), to model new systems and phenomena, improve the readiness of existing models, and 
create model emulators when appropriate. The scenarios a user may encounter when following 
Figure 1 are outlined in the following sections. 
 
It is worth noting that most programs won’t be developing completely new systems, and likely 
won’t need to develop all new models to represent them. The most likely scenario for programs 
developing systems by the use of DE will be a hybrid approach that combines several of the 
scenarios below: 1) obtain as many of the models as possible from the Digital Thread, 2) reduce 
new model development by updating models from the Digital Thread, when feasible, 3) develop 
as many first principles as needed for program use, and 4) fill the remaining gaps with empirical 
models derived from testing. 
 
 

https://www.afit.edu/stat/statcoe_files/Guide%20to%20Developing%20an%20Effective%20Test%20Strategy_DistroA.pdf
https://www.afit.edu/stat/statcoe_files/Guide%20to%20Developing%20an%20Effective%20Test%20Strategy_DistroA.pdf
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Figure 1: Model Selection and Empirical Testing in Digital Engineering 
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Scenario 1: Using a Model from the Digital Thread 
In DE, programs seeking a model should focus their initial efforts on finding models on the 
Digital Thread that represent their systems and sub-systems. In some cases, every model a 
program needs may already exist on the Digital Thread. For example, a program’s goal may be 
to improve an existing system so that it can operate in an expanded set of conditions by building 
it with different, but well-understood materials. The existing system will have an operational 
model, the subsystems may have interaction models, the different materials will have properties 
models, and there will be additional models to generate relevant environmental stimuli. In this 
first scenario, the program will acquire all the models it needs from the Digital Thread and, 
provided their MRLs are sufficient, use them directly. The program will then integrate the models 
to build a digital test environment to get data for analysis. This scenario is denoted in Figure 1 
by the “Yes” path from the decision point labeled “1.” 
 

Scenario 2: Modifying Existing Models from the Digital Thread 
Programs may not always be able to find the exact models they need on the Digital Thread. In 
this scenario, if a similar model is available, the program may be able to modify it to suit their 
needs, as shown by decision “2” in Figure 1. The model will be ready for use once the program 
has modified the model and has determined its MRL to be sufficiently high. Programs looking for 
models to modify should pay particular attention to the MRL, composability of the models on the 
Digital Thread, and any information documented in the model metadata. Not all models may be 
as easily modified as others. If a model requires extensive modifications to be useful (greater 
than 20% of the code needing to be modified) programs will likely find that it is a better use of 
their resources to build a new model.  
 

Scenario 3: Building New Models 
In the third scenario, the program may not find any pre-existing models on the Digital Thread 
that cover the needed system with the needed scope and fidelity, nor any models on the Digital 
Thread that are similar or easily-altered enough to be modified to represent the new system. 
Programs developing novel systems will likely encounter this situation for at least part of the 
overall model representation they need, even if models for some common system 
subcomponents are available on the Digital Thread. In this scenario, the program will have to 
develop new models using one or more of the model data sources outlined below. 
 

New Models from First Principles and Existing Data. New models will ideally be 
based on a first principles understanding of the subject. First principles are built on a logical 
and/or physical understanding of the system, and therefore have some inherent trustworthiness. 
But first-principles models take time to develop, and showing model readiness often requires a 
real-world referent. As systems become more complex or the technologies and applications 
become more novel, the practitioners may not have the level of first principles understanding of 
the new system to create a useful digital model. In some cases, there may be known first 
principles that can support modeling part of a system, but that may not cover the entire system. 
If the known first principles don’t support building a new model, then the program should check 
the Digital Thread for previously collected data, either from testing or operational use of 
sufficiently similar systems, as shown in the “No” path from decision “3” in Figure 1. Data 
retrieved from the Digital Thread will have a known pedigree (established as a prerequisite for 
the data to be on the Digital Thread), and thus may be trusted as the basis for a model. If such 
data is available, as in the “Yes” path from decision “4,” then it can be retrieved from the Digital 
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Thread and directly used to support modeling the system.  
 

New Models based on Empiricism. If there are no sufficient first principles or validated 
data from similar systems available on the Digital Thread, then the program must collect its own 
data to support the creation of an empirical model, as demonstrated by following the “No” path 
from decision “4.” The first step in the creation of a new model is to define the desired model’s 
requirements. The model’s requirements should be well understood by this point in the process 
in Figure 1, since the requirements will be critical in determining if any of the existing models, 
data, or first principles are ready to support the program’s needs. However, the program should 
re-examine the requirements for the model to ensure they meet the criteria of being Specific, 
Unbiased, Measurable, and “Of practical consequence,” or “SUMO,” as outlined by Coleman 
and Montgomery (1993). Once the requirements have been defined, the program can conduct 
the needed testing according to the STAT Process, as outlined in the next section. For example, 
it may be nearly impossible to build a model from first principles of the physical effects of an 
exploding fuel tank after the impact of a munition using finite element analysis (FEA) and 
computational fluid dynamics (CFD), due to the complex and dynamic nature of the system. In 
such cases, a series of empirical studies can reveal cause and effect relationships in systems 
more quickly than FEA and CFD models. Empirical studies using the STAT Process can 
simultaneously examine a broad range of factors, such as projectile velocity, direction, whether 
or not it is incendiary, fuel tank fill-level, and the interactions of those factors, to determine their 
effects on the system. Analysis of the data gathered can provide an empirical model that can be 
used to search for combinations that are most likely to cause a spreading fire or explosion. 
 

Scenario 4: Model Readiness and Empirical Referents 
Whether a program uses a model directly from the Digital Thread, modifies an existing model, or 
builds a new model as in the scenarios described above, the program should always assess the 
model’s MRL to determine if it is ready for use. In all of these scenarios, if the MRL shows that 
the model is ready, then the model can be used. However, if the MRL is insufficient, then the 
“No” path from decision “5” feeds the program back into the process, but with different goals 
than previously discussed.  
 
If the model is not ready, the program will have to determine why. One reason may be that the 
referents are insufficient in one or more aspects of the MRL: fidelity, scope, or referent authority. 
If the referents available are insufficient, a program can employ the same methods used for 
developing a new model in Scenario 3 to find referents that will improve the MRL, as in the 
“Yes” path from decision “6.” In addition to acting as referents to show the readiness of newly 
created models, data from empirical studies may also serve as supplementary referents to 
increase the MRLs of models that are already on the Digital Thread. For example, one program 
may develop an original model (empirical or otherwise) for its own use case and then transfer it 
to the Digital Thread once it has a sufficient MRL. New programs wishing to reuse the model, as 
in Scenario 1, but needing to use the model in a different scope or at a different level of fidelity 
than the program that designed it, may need new referents to determine the model’s MRL in the 
scope and fidelity of interest to them. Data from an empirical source can serve as a referent for 
model applicability in a new scope, improved understanding of fidelity in the existing scope, or 
provide a more authoritative picture of the system the model represents. Application of first 
principles, legacy data from the Digital Thread, and/or new empirical evidence can all serve as 
referents for a model previously developed or taken from the Digital Thread. However, in Figure 
1 at decision “6,” a program may also find that they have all the right authoritative referents to 
cover the needed scope and fidelity, but the model doesn’t fit the referents well. In this case, the 
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program must conclude that the model is a poor representation of the system, and return via the 
“No” path from decision “6” to the Digital Thread to revisit the process of identifying a modeling 
approach. 
 

Scenario 5: Model Emulators 
Once the program determines the model to be ready, the final decision before use is the 
determination of model suitability, decision “7” in Figure 1. While the MRL gives a metric of how 
well the model can be trusted based on its similarity to some authoritative referent(s) in scope 
and fidelity, model suitability deals with the usability of the model: how well the model can be 
implemented and executed in a digital environment. If the model has a high MRL (i.e., matches 
the referents well), but is unsuitable for technical or programmatic reasons (e.g., schedule, run 
time, or computational constraints), then the model cannot be used in its current form. In this 
scenario, the program may wish to build an emulator of that model to use in its place, as in the 
“Yes” path from decision “8.” For example, the first principles CFD model discussed in Scenario 
3 might take a day or more to run. If the run time is too long for the model to be useful, the 
program should follow the “Yes” path and return directly to the application of empirical methods 
via the STAT Process, as shown at the bottom of Figure 1. However, in this case the system to 
be empirically tested (and modeled) will be the existing CFD model. The program can build an 
emulator of this model, which will likely execute faster and with fewer computational resources 
than the original model of the same phenomenon, and will be more suitable for use. If the 
emulator produced has a sufficiently high MRL, it can then be used by the program in place of 
the original model. However, if the program determines that some property of the original model 
cannot be abstracted into an emulated representation, then the program must either find the 
resources to use the model as-is, or, as was the case with a poor-fitting model in Scenario 4, 
return to the process via the “No” path from decision “8” to identify a suitable modeling 
approach. 
 
Note on Model Integration 
The final step before model suitability assessment and use in Figure 1 is for the program to 
integrate the model with other models, if needed. In the DE of complex systems, system-level 
Digital Twins will likely be composed of multiple sub-models and integration will be a key step in 
their assembly and use. Model integration is a non-trivial activity which is beyond the scope of 
this best practice, but practitioners should understand that integration may require the skill and 
expertise of software developers, software integrators, subject matter experts for the systems 
represented by the integrated models (both separately and as an integrated system), and that 
the ease or difficulty of model integration can be greatly impacted by model complexity and 
composable design. More information on tools and methods for model integration can be found 
in the standards referenced in the DoD Modeling and Simulation Related Standards and Best 
Practices Guide (2010). 

Building Empirical Models with the STAT Process 
Building empirical models often requires testing to collect data. In Figure 1, this test phase is 
accomplished via the STAT Process, represented by a block located in the bottom right corner 
and entitled “Experimentation using STAT Process.” The STAT Process (Adams et al., 2020), 
shown in detail in Figure 2, is designed to promote test rigor so that the correct data is gathered, 
the proper analysis is performed, and the risks associated with using the model produced are 
quantified and understood. 
 

https://www.afit.edu/stat/statcoe_files/Guide%20to%20Developing%20an%20Effective%20Test%20Strategy_DistroA.pdf
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Figure 2: The STAT Process 

 
The STAT Process is a framework for test and evaluation that leverages a methodical approach 
with rigorous test and analysis methods founded in statistics to efficiently provide the 
information needed to understand and model a system or phenomenon. Once an empirical 
model has been created, it is critical to employ proper validation methods such as those 
covered by Witten et al. (2016) to ensure the validity of the empirical model produced. When 
producing empirical models to fill gaps in a DE environment, the application of the STAT 
Process and the STAT tools and methods used will be the same as they would in any traditional 
test scenario. Whether the test is conducted on a physical article or an existing model to create 
a new model, a new referent, or an emulator, the application of the STAT Process is the same. 
The greatest distinction for empirical modeling in DE is in the definition of the requirements. 
STAT requirements for empirical modeling in DE should be determined from the characteristics 
needed to enable model readiness, usability, and composability.  

Designing Empirical Models for the Digital Engineering Ecosystem 
When initially developed for a single program, a model only needs appropriate fidelity and scope 
to address the program requirements. In order for one program’s models to be reusable in 
support of other efforts in the DE environment, consideration will need to be given towards 
expanding the applicability of the model to new scopes and uses. If programs design for 
composability and model updating during the initial model creation, empirical data may be used 
to update the model or reassess its readiness later as new applications arise. Optimal 
algorithms for augmenting existing data sets are especially well suited to improving existing 
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models (Goos, 2011). Scope improvements might include validating the model over previously 
unvalidated factor and response ranges, updating the model to cover wider factor and response 
ranges, or adding new factors or responses of interest to the model. New uses will include 
circumstances where a model originally designed for one program is applied across multiple 
programs. For example, a program might want to reapply a mathematical representation of 
water designed for testing naval vessels to modeling hydroplane resistance of tread patterns for 
wheeled vehicles. Instead of the water having ocean depth, as when working with ships, it can 
only be a few inches deep for testing of a wheeled land vehicle. The Navy may not have created 
the model with small depths in mind, but if modeled appropriately the surface-to-water 
interactions should remain sound. A thorough check as part of Continuous Validation will help to 
inform the tread-design team whether or not the water model can be used.  
 
Programs building empirical models in DE should document the critical model properties in the 
model metadata. That metadata should then be carried forward to any system-level models that 
the model is integrated into. The metadata should include the nature and quality of information 
the model should accept as input and/or produce as output, any scope constraints that might 
limit the MRL in new applications, and any critical concerns needed to ensure compatibility in a 
composable model ecosystem. The Modeling and Simulation (M&S) Community of Interest 
(COI) Discovery Metadata Specification (MSC-DMS) covers a broad selection of the types of 
information needed to make a model discoverable in a DE environment and to support its 
appropriate reuse, with syntax examples (2012). 

Conclusion 
Empirical data and the models derived from them will continue to be an important part of how 
programs make decisions even after DE and the Digital Thread become the norm. Modeling the 
systems needed (physics, chemistry, economics, politics, etc.) to successfully meet program 
goals does not require a full first principles understanding of the world. Empirical models, based 
on well-reasoned selection of required outputs and a related set of inputs, provide the data 
necessary to make defensible decisions. DE will serve to extend the useful life of empirical 
models. In the future, as computational power increases, existing empirical models are likely to 
be replaced by more complex first-principles models. The old empirical model’s role will change 
to becoming a referent used to validate the new generation of models. Empirical models can be 
designed to carry with them an understanding of how the modeled system/process works. This 
makes them a perfect tool for being reused and adopted by future programs. 

Glossary 

Accuracy - the degree to which a parameter or variable, or a set of parameters or 
variables, within a model or simulation conforms exactly to reality or to some chosen 
standard or referent (DoD M&S Glossary). 
 
Emulator - a device, computer program, or system that accepts the same inputs and 
produces the same outputs as a given system (SISO-REF-002-1999). 
 
Fidelity - a model’s level of consistency with reality, defined in the four dimensions of 
accuracy, resolution, and repeatability. 
 
Model - a physical, mathematical, or otherwise logical representation of a system, entity, 
phenomenon, or process (DoDI 5000.61, DoDI 5000.70). 
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Modeling and Simulation (M&S) - the use of models, including emulators, prototypes, 
simulators, and stimulators, either statically or over time, to develop data as a basis for 
making managerial or technical decisions (MSE M&S Glossary). 
 
Referent - a codified body of knowledge about a thing being simulated (SISO-REF-002-
1999). 
 
Referent Authority - the strength of credibility of a referent’s claim to be a high-fidelity 
representation of reality. 
 
Repeatability - the similarity of the results obtained from the same model (or referent) 
over multiple observations under the same input conditions. 
 
Resolution - the degree of granularity with which a parameter or variable can be 
determined (Pace, 2015). 
 
Scope - the capabilities, limitations, and assumptions with respect to the inputs and 
outputs representing the relevant mission parameters, environmental conditions, 
constraints, requirements, and their mode of representation. 
 
Simulation - a method for implementing a model over time (DoDD 5000.59, DoDI 
5000.61, DoDI 5000.70). 

 
Specific Intended Use - the set of dimensions, ranges, and assumptions of the model 
inputs and outputs needed to represent the modeled system’s relevant mission 
parameters, environmental conditions, constraints, and requirements, combined with the 
additional constraints imposed by the target modeling environment and the required 
level of fidelity for the specific stage of program development. 
 
Validation - the process that determines whether a model has sufficient fidelity relative 
to an appropriate referent(s) for a specific intended use. 
 
Validity - a model’s level of detail over a pre-specified scope relative to an appropriate 
referent(s). 
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